
Simulations with the Hybrid Monte Carlo
algorithm: implementation and data

analysis

Stefan Schaefer
Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin, Germany

Contents

1 Introduction 1
1.1 Definition of the model 2
1.2 Implementation 3

2 Hybrid Monte Carlo 5
2.1 Momentum heatbath 7
2.2 Molecular dynamics 7
2.3 Hybrid Monte Carlo 10
2.4 Simulation 12
2.5 Physics 13

3 Error Analysis 16
3.1 Theory 16
3.2 Examples 18

4 Summary 21

References 22

1

Introduction

The Hybrid Monte Carlo (HMC) algorithm(Duane et al., 1987), together with its
variants, is currently the most popular method for simulations of full QCD on the
lattice. It is an exact algorithm, which can be used for virtually any theory with
continuous variables. It is a method of choice when many degrees of freedom are
coupled and single variable updates are not feasible.

Because modern QCD packages are rather involved, the idea behind the course
documented here, was to write an HMC code for φ4 theory in D dimensions from
scratch and then perform some simulations. This was targeted at students who do not
work daily on the numerical aspects of lattice field theory and want to gain familiarity
with numerical computations, data analysis and the language used to discuss it. The
mathematical background of Markov chain Monte Carlo and the HMC were introduced
in the lectures by M. Lüscher at this school(Lüscher, 2010), however, for consistency,
the basic definitions are given below. Whereas writing a full code for SU(3) gauge
theory would have been beyond the scope of this course, a simple theory like φ4

provides a feasible object for the basic ideas behind such a simulation and, apart from
the complications concerning the group variables, the φ4 code proceeds exactly as one
for the gauge theory.

Studying φ4 theory numerically has a long tradition in field theory. It is believed
to be in the Ising universality class and for the d = 3 dimensions, to which we re-
strict ourselves here, it has been used to extract the corresponding critical exponents
to high accuracy, see e.g. Refs. (Hasenbusch et al., 1999; Hasenbusch, 1999). Obvi-
ously, the HMC algorithm is not the most efficient choice for these computations. In
the literature, local heat-bath and over-relaxation sweeps are combined with cluster
updates.

The course resembled more a recitation class than a lecture, in the sense that after
a short introduction the students were working on a problem sheet. The presentation
here goes along the line of these problem sheets, essentially solving them. This might
explain some repetitions and also the fact that many issues are not covered.

During the school, virtually all the code was written from scratch, with two excep-
tions: one is a routine which fills the neighbor field used to navigate the D dimensional
lattice. The other is a routine that computes the action on a given field configuration.
This essentially served the purpose of exemplifying the use of the hopping field. The
starting code and also the final HMC are available under

http://nic.desy.de/leshouches/

or directly from the author.

2 Introduction

The course proceeded as follows: in the first lesson, the model was defined and to
gain some familiarity with the code, the measurement routines and the momentum
refreshment were implemented. With the second sheet, the molecular dynamics was
implemented and tested. The third class had the full HMC algorithm with the accep-
tance test, again checks of the code and first running studying thermalization. The
fourth and final lesson was devoted to auto-correlation analysis and measurement of
critical exponents. This text follows loosely this structure, keeping the style and also
large parts of the text of the problem sheets. The actual tasks are given at the end of
each section.

1.1 Definition of the model

We immediately define the model on a D dimensional LD lattice with lattice spacing
a and size L = Na. Thus the lattice points are given by

x = a(n0, . . . , nD−1) ; ni ∈ N0 , 0 ≤ ni < N .

Since this writeup is about numerical techniques, from now on a will be set to one.
The real valued fields φ are living on the sites, φx ∈ R and we adopt periodic boundary
conditions: if µ̂ is the unit vector in µ direction, then φx+Lµ̂ = φx. The action S is
given by

S(φ) =
∑
x

[
−2κ

D−1∑
µ=0

φxφx+µ̂ + φ2
x + λ(φ2

x − 1)2

]
. (1.1)

and expectation values can be computed using the path integral method

〈A〉 =
1
Z

∫ ∏
x

dφx exp(−S(φ))A(φ) (1.2)

with the partition function Z =
∫ ∏

x dφx exp(−S(φ)).
The model has two well known limits: λ = 0 gives a Gaussian model, in the

limit λ → ∞ the Ising model is recovered. We will only do computations in three
dimensions, where it has a second order critical line in the space spanned by the two
coupling constants λ and κ.

1.1.1 Observables

We will be looking just at a few observables. The most important ones are powers of
the magnetization m

m =
∑
x

φx . (1.3)

Note that on a finite lattice 〈m〉 = 0, because the action is invariant under φx → −φx
and the fact that spontaneous symmetry breaking only occurs in an infinite volume.
So interesting quantities are the magnetic susceptibility

χ =
1
V
〈m2〉

Implementation 3

and the Binder cumulant U

U =
〈m4〉

(〈m2〉)2 . (1.4)

U is dimensionless and therefore can be used as a phenomenological coupling.
Other interesting quantities to look at are derivatives of observables with respect

to κ. If A does not depend on κ, we can get them from correlations with the interaction
term W

∂

∂κ
〈A〉 = 〈WA〉 − 〈W 〉〈A〉 with W = 2

∑
x

D−1∑
µ=0

φxφx+µ̂ . (1.5)

1.2 Implementation

The starting point for the implementation are routines for the layout of the fields and
the navigation of the D dimensional lattice, along with an example provided by a
function to compute the action of a given field φ. They are available along with the
code for the solutions under the URL given on page 1.

Most of it is in file phi4.c. It contains the main program, which at the moment
does read in the basic parameters of the action, initializes the hopping field, fills the
field φ with random numbers and computes the action S on a given field configuration
φ.

1.2.1 Layout of the lattice

The φ field and the hopping field are global in lattice.h, where also the lattice size L,
the dimension D and the volume V are defined. The lattice is ordered lexicographically,
each point with coordinate (n0, n1, . . . , nD−1) gets assigned a unique index j. It can
be computed by

j =
D−1∑
i=0

niL
i.

This way, the field φx of the Lagrangian is realized as the one dimensional field phi[j]
with length V =

∏
i Li of the computer program.

Fortunately, the specific ordering of the points needs rarely to be understood.
However, the hopping field hop[V][2*D] is important to understand: it is used to
navigate the D dimensional lattice. The index of the neighbor of the point with index
i in direction µ is hop[i][mu] in the forward direction 0 ≤ µ < D and hop[i][D+mu]
in the backward direction. If this point has coordinates (n0, n1, n2), then the point
with coordinates (n0, n1 + 1, n2) has index jp=hop[i][1]. Analogously, if we want
to increase n2 by one, then jp=hop[i][2]. The field also takes care of the periodic
boundary conditions. If you want to go into the negative direction, the corresponding
indices are in the upper D entries of the hop field. So (n0, n1 − 1, n2) has index
jp=hop[i][D+1].

As an example, the code for the computation of the action corresponding to a field
phi[] is given in Figure 1.1. In line 11 we perform a loop over all sites and for each
of them sum over the values of the field in the D positive directions. This corresponds

4 Introduction

1 double action(void)
2 {
3 int i;
4 double J;
5

6 S=0;
7 for (i=0;i<V;i++) /* loop over all sites */
8 {
9 /* sum over neighbors in positive direction */

10 J=0.0;
11 for (mu=0;mu<D;mu++) J+=phi[hop[i][mu]];
12

13 phi2=phi[i]*phi[i];
14 S+=-2* kappa*J*phi[i]+phi2+lambda *(phi2 -1.0)*(phi2 -1.0);
15 }
16 return S;
17 }

Fig. 1.1 Function for the compuation of the action.

to the µ sum in Eq. 1.1. From this quantity and the value of the field at the site, the
action density can be computed and accumulated for the total value of the action.

The “tasks” given below ask for measurement routines to be implemented. They
are simple modifications of the action routine with the magnetization just the sum
over the field

∑
x phi[x]. For the derivatives, the interaction term is needed, which

is just the sum over J*phi[x] as in the subroutine for the action.
To get familiar with the code here are a few simple exercises

Exercise 1.1 Get the code, type make phi4 to compile and then run it ./phi4 infile.
infile is the input file from which the parameters are read.

Exercise 1.2 Understand the phi4.c file. First main() then action() which computes the
action S for the global field phi[], in particular how the hopping field is used.

Exercise 1.3 Write a routine to measure the magnetization m defined in Eq. 1.3. Test this
routine on field configurations φ of which you know the result.

Exercise 1.4 Write a routine to measure the other quantities necessary for the κ derivative
of 〈m2〉 and 〈m4〉 using Eq. 1.5.

2

Hybrid Monte Carlo

Now that the fields are laid out and the action has been defined, we set out to im-
plement the algorithm that generates a series of field configurations φi such that the
expectation value in Eq. 1.2 can be estimated by a simple average over the measure-
ments on those configurations

〈A〉 =
1
N

∑
i

A[φi](1 +O(1/
√
N)) ,

where the error is purely statistical and is reduced with the square root of the number
of measurements N . For this, an “exact” algorithm is needed, i.e. one which does not
introduce a systematic error into this estimate, see Lüscher’s lectures for more details.

HMC is an exact algorithm. It starts with enlarging the partition function by
momenta π

Z =
∫ ∏

x

dπx
∏
x

dφxe−H(π,φ) ,

where for each site x, a momentum πx is associated to the φx. The “Hamiltonian” H
is given by

H(π, φ) =
1
2

∑
x

π2
x + S(φ) .

Obviously, expectation values of observables A[φ], which are functions of φ only, are
unaltered. At first sight, the gain from this augmented partition function is unclear,
however, a particular kind of field update becomes possible.

It is based on molecular dynamics (MD) evolution, which means that we treat this
system in close analogy to classical mechanics, where the fields play the role of the
(generalized) position and the potential energy is given by the action of the model.
The system obeys Hamilton’s equations of motion,

dφ
dτ

=
∂H

∂π
and

dπ
dτ

= −∂H
∂φ

,

where a “Monte Carlo” time τ is introduced. (To avoid any misunderstanding: these
are not the equations of motion of the underlying theory, but those associated to the
artificial Hamiltonian H.) From the solution of these equations of motion, a valid
update algorithm can be derived, because from classical mechanics we know that they
conserve the Hamiltonian H and the phase space volume, the latter by Liouville’s
theorem. Loosely speaking, a configuration of (π, φ) is equally likely to the (π′, φ′),

6 Hybrid Monte Carlo

which one gets by using (π, φ) as initial condition and solving the equations of motion
for some time τ . In spirit of the analogy to classical systems, moving the fields in this
way is called a trajectory of length τ . Since the energy H is conserved, during this
evolution, this is a micro-canonical update.

But this is only one component of the HMC. The “hybrid” in the name of the
algorithm comes from the fact that different algorithms are used for different parts
of the partition function. For the momenta, heat-bath updates are employed. This
is easy, because the π follow a simple Gaussian distribution independent of the φ.
The fields φ are updated with (quasi) micro-canonical molecular dynamics evolution,
solving the equations of motion. An algorithm which alternates between these two
steps is the “Hybrid Molecular Dynamics” algorithm. The classic QCD citation is
Ref. (Gottlieb et al., 1987).

The HMD algorithm would be exact in case we could solve the equations of motion
exactly. However, in general we have to use a numerical method to solve these equa-
tions and therefore integration errors occur. Given some properties of the integration
procedure, namely the time-reversibility and the conservation of the phase space vol-
ume, this algorithm can be made exact with a final Metropolis step at the end of each
trajectory. One considers the fields (π′, φ′) at the end of the trajectory as a proposal.
The new field configuration is accepted with probability exp(−∆H), where ∆H is the
difference of the Hamiltonian at the beginning and the end of the trajectory. If the
proposal is rejected, we go back to the field φ and start again by the heat-bath for
the momenta π. Note that in case the solution of the equations of motion is exact,
we know that Ḣ = 0, which implies ∆H is zero and the proposed change is always
accepted.

Before starting the implementation, let us summarize the HMC algorithm for a
single trajectory. This is then repeated Ntr times, where Ntr depends on the accuracy
required and the amount of computer time allocated for the project.

1. Momentum heat-bath: Choose new random momenta according to the distribu-
tion P (πi) ∝ exp(−π2

i /2).
2. Molecular dynamics evolution: Numerically solve the Hamiltonian equations of

motion

d
dτ
φx(τ) =

∂

∂πx
H(π(τ), φ(τ))

d
dτ
πx(τ) = − ∂

∂φx
H(π(τ), φ(τ))

(2.1)

for some interval of the fictitious time τ . This moves the fields from some initial
(π, φ) to the proposed new fields (π′, φ′).

3. Acceptance step: Calculate the change in the Hamiltonian ∆H and accept the
proposed new field φ′ with probability

Pacc = min[1, exp(−∆H)] ; ∆H = H(π′, φ′)−H(π, φ) .

The implementation of these three steps will be discussed in the rest of the section,
along with hints for the debugging of such code.

Momentum heatbath 7

2.1 Momentum heatbath

The first step of the HMC algorithm is the momentum refreshment, i.e. the conjugate
momenta π are filled with Gaussian random numbers. Random number generators by
themselves are a complicated subject, which goes beyond the scope of this writeup.
We therefore take as input a library routine which generates pseudo-random num-
bers, equally distributed in the range [0, 1). A popular choice is ranlux, a high-quality
random number generator(Lüscher, 1994) for which a C implementation is freely avail-
able.1

These have then to be transformed such that they follow a normal distribution, e.g.
by the Box-Muller procedure: Given x1 and x2 which are drawn from a flat distribution
xi ∈ [0, 1), then y1 and y2 with

y1 =
√
−2 ln(1− x1) cos(2π(1− x2))

y2 =
√
−2 ln(1− x1) sin(2π(1− x2))

are distributed according to P (yi) ∝ exp(−y2
i /2). We always take (1− xi) in order to

exclude the zero in the argument of the logarithm.
Once such a routine has been implemented, it needs testing. The most obvious

requirement is that the generated random numbers have the expected distribution.
For this, it is convenient to histogram the output and compare with the expected
form. To give such a comparison a statistical significance, the Kolmogorov-Smirnov
test should be applied. From a practical point of view, this is sufficient in our context, if
we assume that the underlying random number generator is of sufficiently high quality
for our purposes.

Exercise 2.1 Write a routine which fills a vector of length n with double precision Gaussian
random numbers distributed according to P (x) ∝ exp(−x2/2). Test this routine by filling
many such vectors and histogramming. Does the distribution match your expectation? (Do
this only if time allows, otherwise get the routine from me.)

Exercise 2.2 Now introduce the global momentum field mom[V] which will hold the mo-
menta π conjugate to the field variables phi[V] and fill it with normally distributed random
numbers. Write a routine which, given the phi and mom fields, computes the molecular dy-
namics Hamiltonian H.

2.2 Molecular dynamics

The second step in the HMC algorithm, the molecular dynamics evolution, is the part
in which the fields φ are actually changed. In general, it is by far the most difficult
to implement part of the whole algorithm. On the other hand, it is relatively easy to
debug: it consists of the numerical solution of the classical MD equations of motion, for
which we know that the Hamiltonian is conserved. By making the numerical integration
more and more precise, we can therefore check the setup by observing an improvement
in the energy conservation in accordance with the expected scaling from the integrator.

1http://luscher.web.cern.ch/luscher/ranlux/index.html

8 Hybrid Monte Carlo

The approximate numerical solution of differential equations like Eqs. 2.1 is a vast
field of current research, the coverage of which is beyond the scope of these exercises.
For more information, see again Lüscher’s lectures at this school and the book by
Reich and Leimkuhler(Leimkuhler and Reich, 2005).

In many applications, the integration algorithm is constructed by a so-called split-
ting method, based on a decomposition of the Hamiltonian in exactly integrable pieces

H(φ, π) = H1(π) +H2(φ)

with H1(π) =
∑
x π

2
x/2 and H2(φ) = S(φ). Also the splitting into more terms is

possible and exploited in modern QCD codes. The algorithm consists of repeated
application of the two elementary steps

I1(ε) : (π, φ)→ (π, φ+ ε∇πH1(π)) (2.2)
I2(ε) : (π, φ)→ (π − ε∇φS(φ), φ) (2.3)

It turns out, that basically any combination of steps I1(x) and I2(x) leads to a
legal integrator as long as the time shifts x add up to τ during a trajectory. A simple
algorithm is the Störmer-Verlet method, in the QCD literature mostly referred to as
the leap-frog, which corresponds to the application of

Jε(τ) = [I1(ε/2)I2(ε)I1(ε/2)]Ns (2.4)

with τ = Nsε the length of the trajectory. Because it is symmetric under time-reversal,
a potential deviation from the exact solution O(ε) drops out and the leading violation
due to the finite step-size ε is O(ε2). Observing this scaling behavior with varying
step-size serves as the check of the correctness of the code discussed in the beginning.

The leap-frog integrator is still the main work horse of molecular dynamics simu-
lations, however, in recent years in has been realized, that modified schemes can lead
to significant improvement at little extra cost. One example is the so-called Omelyan
integrator (Omelyan et al., 2003) which reduces the coefficient of the ε2 term and for
one particular criterion an optimal scheme is given by

[I1(ξε)I2(ε/2)I1((1− 2ξ)ε)I2(ε/2)I1(ξε)]Ns

with a tunable parameter ξ. The canonical value is ξ ≈ 0.1931833.
Both integration methods, leap-frog and Omelyan’s prescription, satisfy the re-

quirements, which are needed for the final HMC to be exact: it is time reversible
and the phase space measure is conserved, both properties of the exact solution. Re-
versibility means that if we perform one trajectory (π0, φ0) → (π1, φ1), then flip the
momentum π1 → −π1 and now use the same algorithm to run the trajectory back,
we end up in exactly the same spot (π2, φ2) = (π0, φ0), where we started. This is true
at least in exact algebra. On a real computer with fixed precision arithmetic, this is
spoiled by rounding errors, which come from the violation of associativity of the sum-
mation. Though the effect of this violation is in general tiny, the influence on the final
measurements is unclear, but in most cases negligible. (In QCD simulations, however,
the issue is serious, because chronological inversion techniques cause coupling from
previous MC time steps.) Reversibility is a standard check of the code.

Molecular dynamics 9

The second important property is that the map in phase space, which is defined
by the integration algorithm like the one given in Eq. 2.4,

Jε(τ) : (π, φ)→ (π′, φ′)

conserves the phase space measure. As a consequence of this, the exponential of the
change in the Hamiltonian ∆H = H(π′, φ′)−H(π, φ) is one on average

〈exp(−∆H)〉 =
1
Z

∫
[dπ][dφ]e−H(π,φ)e−∆H(π,φ) =

1
Z

∫
[dπ′][dφ′]e−H(π′,φ′) = 1 ,

at least if the algorithm is exact, which is the case for the full HMC. This observable
is therefore also routinely checked in simulations to provide yet another check for the
code and the choice of parameters.

Here, a remark on the language used in the field is in place. In line with the
language of classical mechanics, F = −∇φS(φ) in Eq. 2.3 is called the “force”. With
a suitable norm, one can then speak of the size of such forces. Large forces typically
require smaller step-sizes for the integration and therefore measuring them serves as
a common guide to tuning the various parameters of modern HMC simulations.

2.2.1 Implementation

For the φ4 Hamiltonian, the derivatives are easily computed. The derivative of the
Hamiltonian with respect to the momentum πx in Eq. 2.3 evaluates independently of
the model to

∇πxH1(π) = πx . (2.5)

The corresponding code can be found in Fig. 2.1. The expression for the force in
Eq. 2.2, however, will depend on the particular choice of the discrete action. For the
one given in Eq. 1.1, the forces read

∇φx
S(φ) = −2κ

D−1∑
µ=0

(φx+µ̂ + φx−µ̂) + 2φx + 4λ(φ2
x − 1)φx

= −2κJx + 2φx + 4λ(φ2
x − 1)φx

(2.6)

Using Jx =
∑D−1
µ=0 (φx+µ̂ + φx−µ̂), the sum of the field φ on all neighboring sites. For

this purpose, the hopping field hop, introduced in Sec. 1.2.1, also contains the indices
of the sites in negative direction. For the site x, the sum can thus easily be computed
by adding up phi[y] over all sites with indices y=hop[x][mu], with mu running from
0 to (2D − 1). This is implemented in the code reproduced in Fig. 2.1.

Once this code is written, the routines have to be verified. Given a correct imple-
mentation of the computation of the action, a very stringent test is the behavior of
the violation of energy along a trajectory. As already discussed, the change in H(π, φ)
during the trajectory is expected to scale with ε2, the square of the step-size of the
integration algorithm. The result of the test at the parameters suggested below is dis-
played in Fig. 2.2. We observe exactly the expected behavior. The Omelyan integrator
performs roughly a factor of two better than the leap-frog, even after normalization by

10 Hybrid Monte Carlo

1 void move_phi(double eps)
2 {
3 int i;
4 for (i=0;i<V;i++) phi[i]+=mom[i]*eps;
5 }
6

7

8 void move_mom(double eps)
9 {

10 int i,mu;
11 double J, force;
12

13 for (i=0;i<V;i++)
14 {
15 J=0;
16 for (mu=0;mu <2*D;mu++) J+=phi[hop[i][mu]];
17

18 force =2* kappa*J-2*phi[i]-lambda *4*(phi[i]*phi[i]-1)*phi[i];
19 mom[i]+= force*eps;
20 }
21 }

Fig. 2.1 The two elementary updates corresponding to Eq. 2.2 (top) and Eq. 2.3(bottom)

for the action given in Eq. 1.1, implementing Eq. 2.5 and Eq. 2.6 respectively.

the number of force evaluations (typically the most expensive part of the simulation)
per step. However, one should stress that the fact that ∆H ∝ ε2 tests only whether
force and action match, matching errors in both routines will remain undetected.

Exercise 2.3 Write routines which perform the two elementary updates in Eq. 2.3 and
Eq. 2.2.

Exercise 2.4 Write a routine which repeats the sequence of these three steps Ns times. This
moves the fields to time τ = Nsε.

Exercise 2.5 Test this routine by measuring the Hamiltonian after each application of the
three steps. Since they are supposed to solve the Hamiltonian equations, the energy H should
be conserved up to O(ε2). Use trajectories of length 1 and test for various ε that this is indeed
the case. Suggestion: use a 44 lattice, κ = 0.18169 and λ = 1.3282, starting from a random φ
field. Do 1000 trajectories, measure the energy violation |∆H| after each.

Exercise 2.6 An important property of the integrator is that it is reversible. So if we do
a trajectory (π, φ) → (π′, φ′) and flip the momentum π′ → −π′, then the trajectory with
(−π′, φ′) as initial values should lead to (π, φ). Check that this is the case. What spoils this?

Exercise 2.7 If you are ambitious: try the Omelyan integrator. Compare to the leap-frog.

2.3 Hybrid Monte Carlo

So far we have implemented the Hybrid Molecular Dynamics algorithm, which is in-
exact due to the integration errors of O(ε2). In a seminal paper on the Hybrid Monte

Hybrid Monte Carlo 11

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.002 0.004 0.006 0.008 0.01

|∆
 H

|

(ε/Nfrc)
2

Verlet
Omelyan

Fig. 2.2 Energy violation as a function of step size showing the expected quadratic conver-

gence. Comparison between Verlet and Omelyan integrator.

Carlo algorithm (Duane et al., 1987), Duane, Kennedy, Pendleton and Roweth real-
ized that it can easily be made exact by a Metropolis acceptance step. Basically one
measures the value of the Hamiltonian Hi = H(π, φ) at the beginning of the trajectory
and saves the field φ. Then one performs the molecular dynamics evolution and again
measures the Hamiltonian Hf = H(π′, φ′). This “proposed” new φ′ is accepted with
probability min[1, exp(−∆H)] where ∆H = Hf −Hi, else the new field is set to the
initial field φ.

In a practical implementation, this acceptance step is realized by the following
scheme: If ∆H < 0, accept, else throw a random number r and accept if exp(−∆H) >
r, else reject the configuration. In case of rejection, copy back the φ at the beginning
of the trajectory to the phi[] array.

More from the point of view of the implementation, a trajectory of the HMC
algorithm therefore can be summarized in the following way

1. Momentum heat-bath on field mom[].
2. Keep a copy of the current field phi[] in phiold[].
3. Measure the current value of the Hamiltonian Hi.
4. Molecular dynamics with initial values mom[] and phi[]. These fields get over-

written by the values after the evolution.
5. Measure the value of the Hamiltonian Hf .
6. If the Metropolis test rejects the new configuration, copy phiold[] to phi[].

This concludes the programming effort to implement the HMC algorithm for the
φ4 theory. An example for the implementation can be obtained at the URL given on
page 1. Using this code, we can now simulate the model and measure expectation

12 Hybrid Monte Carlo

values of the physics observables already implemented. The measurement would be
step number seven in the list. It has to take place after the Metropolis step and
after a potentially rejected configuration has been replaced. Typically, one does not
measure after each trajectory. As will be discussed below, the configurations which
are a few trajectories apart are correlated and the new measurement does not give
much new information. The measurement frequency is therefore a balance between the
cost of one measurement, the cost of a trajectory, the correlations between successive
configurations and the amount of data to be stored. In our case, measurements are
very cheap and since we are interested in the correlations, we can afford to measure
after each trajectory. In QCD, measurements frequently cost a significant amount of
computer time and consequently it is worth separating them by a couple of trajectories.

Exercise 2.8 Extend your program to the HMC algorithm: measure H and save the phi[]
field at the beginning; perform the Metropolis step at the end.

Exercise 2.9 We also want to do physics measurements, so measure the magnetization m
and the action S after each trajectory.

Exercise 2.10 Detour, if time allows: Computing the energy difference from Hi and Hf is
susceptible to round-off errors. It is better to subtract first the energy densities and then
perform the sum. Also doing the sums hierarchically might be advised, first summing over
sub-lattices and then accumulating these results. Implement these improvements in your code.

2.4 Simulation

Given a correct algorithm, i.e. one which is ergodic, stable and without errors in the
implementation, the Markov chain can be started from any configuration, or distri-
bution of configurations. Applying the algorithm for a sufficiently large number of
iterations will deplete the wrong contributions of this distribution and in the end, one
is left with the correct distribution given by the theory one wants to simulate. This
decay is exponential but the corresponding decay rates can be very small. The process
is called “thermalization” and once it is over, the simulation is in “equilibrium”.

In practical simulations, one measures several quantities in regular intervals. During
the thermalization, their values show a systematic drift; once equilibrium is reached,
they fluctuate around their “true” average. This can look rather differently for vari-
ous quantities, but as long as there are these systematic movements in any quantity,
equilibrium has not been reached.

If one is uncertain about equilibration, a way to proceed is to start from very
different starting configurations and observe whether or not common values for the
observables are reached.

Once in equilibrium, there is a further test of the correctness of the code: we know
that 〈exp(−∆H)〉 = 1. Of course, as will be discussed in the last section, measurements
are only meaningful with a well-determined error. For this we have to measure the
auto-correlations in this particular observable using the methods discussed in that
section. For a run on a lattice with L = 6, κ = 0.185825 and λ = 1.1689 with
trajectories of length 1 using 10 steps of the leap-frog algorithm, we get a rate of

Physics 13

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

<
m

2 >

ε2

HMC
HMD

Fig. 2.3 Dependence of the magnetic susceptibility measured on the ensemble on the step

size of the integration. The step-size error evident in the HMD algorithm is removed by the

Metropolis step in the HMC. The parameters of the runs are given in the text.

acceptance of 87%. The exponential of the energy violation averages beautifully to 1,
〈exp(−∆H)〉 = 1.0002(6), despite fluctuations of ∆H with 〈∆H2〉 = 0.1097(8).

Another demonstration that the acceptance step makes the HMC algorithm exact
is to look at the dependence of observables with changing step size. In Fig. 2.3 we
observe that the extracted value of 〈m2〉 is independent of it, at least within error-
bars. The same algorithm without the Metropolis step, the Hybrid Molecular Dynamics
algorithm, however, shows a clear deviation from this value which scales consistent with
ε−2.

In principle the HMC can be run at any step size, which leads to the question of
its optimal choice. For most simulations, acceptance rates between 70% and 90% are
good target values. Higher rates typically mean that too much effort is spent on the
integration. Low values of the acceptance rate, however, frequently can be improved by
relatively little additional effort. Also they might be an indicator for a problem in the
numerical integration. The corresponding data for this simulation is plotted in Fig. 2.4.
We show the acceptance rate as a function of the square of the step-size and see a linear
deviation from one. Ultimately, what counts is the cost of producing an independent
configuration, as will be explained in the next section. To first approximation this
is the cost per accepted trajectory, which is shown in the right plot. We observe a
relatively shallow minimum in the region between 50% and 90% acceptance.

2.5 Physics

Using this code, one is in the position to compute estimates for the observables one
might be interested in. For this, of course, a method to compute their errors is needed,
since averages without giving their uncertainty are of no use. This will be explained in
the next section. The comparison of such expectation values to data from the literature

14 Hybrid Monte Carlo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06

ac
c.

 r
at

e

1/ε2

 0

 10

 20

 30

 40

 50

 0 0.02 0.04 0.06

1/
ε/

(a
cc

. r
at

e)

ε2

Fig. 2.4 Dependence of the acceptance rate on the step-size(left) and the cost per accepted

trajectory also as a function of the step-size(right). The cost has a wide minimum which

corresponds to acceptance rates between roughly 50% and 90%.

is as yet another test for the correctness of the code, and frequently a very important
one. In our case, Refs. (Hasenbusch, 1999; Hasenbusch et al., 1999) contain a large
quantity of high precision data to serve this purpose.

In order to actually do some physics with the program, one might follow the lines
of these references and study critical phenomena of the Ising universality class. In
principle, the extraction of the critical exponents is possible, even though the algorithm
is definitely not the fastest one for this particular model. Had this course been one
session longer, the computation of some leading critical exponents could have been
attempted. The reader is referred to the above mentioned publications for strategies.
Fig. 2.5 has to serve as a demonstration that the physics comes out about right. What
is shown is the average of |m| as it crosses the phase transition. The absolute value
is taken, because in finite volume 〈m〉 is zero. In infinite volume, the magnetization
is zero above the critical temperature, and from the critical point on, it rises towards
saturation. As we can see in the figure, this behavior is approached for L growing
towards infinity.

Exercise 2.11 We do some initial test using L = 6, κ = 0.185825 and λ = 1.1689. This is
pretty close to the critical line. Perform 5000 trajectories of length 1, ε = 0.05, starting from
a random initial configuration. Observe how the system thermalizes. Compare with runs at
κ = 0.1 and κ = 0.2. How long (in MC time) do we have to wait until we can say that we are
in equilibrium?

Exercise 2.12 Now make a longer run, eg. 105 trajectories. Start measuring after the ther-
malization has been completed. What are the values of the Binder cumulant, the magneti-
zation and the action? To avoid problems with auto-correlations, combine the results from
Nav = 1000 consecutive measurements and then do a naive error analysis on these values.
What is the acceptance rate?

Exercise 2.13 Verify that 〈e−∆H〉 = 1.

Exercise 2.14 Convince yourself, that you actually have a correct algorithm. The results
should not depend on the step-size. If the steps are too large, only the acceptance rates
goes down, the average values of the observables should not be affected. Again, block 1000
measurements.

Physics 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

<
|m

|>
/V

κ

L=6
L=8

L=10
L=12

Fig. 2.5 Behavior of the magnetization 〈m〉/V across the phase transition for different lattice

sizes. In infinite volume, this should be zero for κ < κcr marked by the ’x’ on the x-axis. This

behavior is slowly approximated for growing L.

Exercise 2.15 Now change to λ = 1.145 where the critical point is according to Ref. (Hasen-
busch, 1999) at κc = 0.1864463(4). How does 〈|m|〉/V change when you cross the phase
transition. How does the picture depend on L?

3

Error Analysis

Most Monte Carlo algorithms produce a series of field configurations which are corre-
lated among each other. These correlations die out with increasing Monte Carlo time
separation, however, it still poses a problem to the estimation of the statistical errors
of measured observables. Here, a brief summary of the method to deal with these
correlations is given, for more detail see Refs. (Sokal, 1996; Wolff, 2004).

3.1 Theory

To be specific, our algorithm produces configurations φ1 → φ2 → · · · → φN on which
observables Aα (labelled by an integer α) are measured. So we get a set of measure-
ments {Aαi : i = 1, . . . , N}. Let us assume that the thermalization process is already
completed and the φi are in equilibrium. To quantify the correlations between the
successive configurations one looks at the auto-correlation function Γαβ

Γαβ(t) = 〈(Aαi − 〈Aα〉)(A
β
i+t − 〈A

β〉)〉 . (3.1)

Auto-correlations let this to be non-zero for t > 0. The brackets 〈· · · 〉 mean an average
over repeated ’experiments’, i.e. independent sets of N configurations. Of course, we
almost never do this in real life, but use an estimator from one Markov chain

Γ̄αβ(t) =
1

N − t

N−t∑
i=1

(Aαi − Āα)(Aβi+t − Ā
β) +O(1/N) (3.2)

with Āα = 1
N

∑
iA

α
i .

In most lattice simulations, we compute observables, which are functions of such
averages of primary observables

F = F (A1, . . . , An)

from which we also need the derivatives fα = ∂F/∂Aα. For example, the Binder
cumulant Eq. 1.4 is constructed from two primary observables U = A2/A

2
1 with A1 =

〈m2〉 and A2 = 〈m4〉. Accordingly, the derivatives are f1 = −2A2/A
3
1 and f2 = 1/A2

1.
The obvious estimator of F is F̄ = F (Ā1, . . . , Ān) and its error σF is given by(Wolff,

2004)

σ2
F =

2τint

N
vF (3.3)

with the variance vF given by

Theory 17

vF =
∑
αβ

fαfβΓαβ(0)

and the integrated auto-correlation time for the observable F

τint,F =
1
2

+
1
vF

∞∑
t=1

∑
αβ

fαfβΓαβ(t)

≡ 1
2

+
∞∑
t=1

ρF (t) .

(3.4)

Since Eq. 3.3 is exactly the standard formula for the one sigma error, but where the
number of measurements N is divided by 2τint, one colloquially speaks of twice τint

as the time to produce an independent configuration. It has to be stressed, however,
that this statement can strongly depend on the particular observable F . The error of
the normalized auto-correlation function ρF can also be given

[δρF (t)]2 =
1
N

∞∑
k=1

(ρF (k + t) + ρF (k − t)− 2ρF (t)ρF (k))2
.

Note that ρF (t) = ρF (−t).
In a practical implementation, it is frequently tedious to compute first Γαβ(t) via

Eq. 3.1 and then the matrix element fαΓαβ(t)fβ according to Eq. 3.4. The easier path
is to first get Bi =

∑
α fα(Aαi −Āα) and from this immediately the relevant correlation

function ΓF (t)

ΓF (t) =
1

N − t

N−t∑
i=1

(BiBi+t) +O(1/N) .

Because Γαβ(t) is only poorly determined for large t, the sum for τint has to be
truncated at some finite “window” W . Otherwise one would essentially sum up noise
and increase the error of the computed τint,F

τ̄int,F =
1
2

+
W∑
k=1

ρF (t) . (3.5)

By neglecting the contribution from k > W , one introduces a bias in the estimator.
According to Madras and Sokal(Madras and Sokal, 1988), the variance of this estimator
of τint is given by

(δτint,F)2 ≈ 4W + 2
N

τ2
int,F ,

which shows that without a finite W the variance would be infinite. The right choice
of W amounts to a balance between bias and variance of the estimator of τint. Madras
and Sokal (Madras and Sokal, 1988) use as W the first point where W ≥ cτint(W),
e.g. with c = 4. For a single exponential decay, this leads to a 2% error on τint.
Lüscher in Ref. (Lüscher, 2005) suggests to sum up to the smallest W such that√
〈δρ(W)2〉 ≥ ρ(W), i.e. the point in ρ where the noise starts to overwhelm the signal.

18 Error Analysis

 0
 20
 40
 60
 80

 100
 120
 140

 0 200 400 600 800 1000 1200

τ in
t(W

)

W

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

ρ(
t)

t

Fig. 3.1 Upper plot: Normalized auto-correlation function ρ(t) of the magnetization m.

The lower plot shows the accumulated sum for the computation of τint as function of the

summation window W . The dashed lines indicate the 1σ range of its estimate.

3.2 Examples

An example of this procedure is given in Fig. 3.1. This is data from a run on a L/a = 6
lattice with λ = 1.145 and κ = 0.18 from one million trajectories. This is more statistics
than many runs in QCD. One can observe a nice exponential fall-off in the normalized
auto-correlation function ρ(t). In the lower plot the partial sum of τint as in Eq. 3.5
up to a window W is done. This saturates at around W = 800, a point where the
measured ρ(t) is still measured well enough to be different from zero.

The measurement of auto-correlation times can also serve as a rational of the
choice of the trajectory length τ . So far it has been a free parameter of the algorithm.
The basic idea is that for very short trajectory lengths (maybe one short elementary
leap-frog step only), the momentum are refreshed very frequently and one moves in
a new, arbitrary direction. This means the system performs a random walk, which is
known to be inefficient as the distance from the origin after Ns steps scales with τ

√
Ns;

the amount of work, however, goes with τNs. Scaling very short τ by a factor of x
should therefore result in an improvement by

√
x, keeping the cost constant. At some

point, this argument breaks down because the random walk regime is left. Then longer
trajectories just cost more without any further improvement in the auto-correlations.
In Fig. 3.2, this behavior is shown for the auto-correlation time in units of molecular
dynamics time, i.e. cost. One observes a clear minimum around τ = 2. However, in a
range between τ = 1 and 4 remains within 25% of the optimum.

Auto-correlation times depend strongly on the physical system, the observable and

Examples 19

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10

τ in
t/
M

D
u
n
it
s

τ

Fig. 3.2 Auto-correlation time of m2 in units of Monte Carlo time as a function of trajectory

length. In this simulation, trajectory length is almost directly proportional to the cost. The

optimal trajectory length for this observable is therefore around τ = 2.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23

τ in
t(m

2)

κ

Fig. 3.3 Auto-correlation time of m2 in units of Monte Carlo time as a function of κ for a

L = 6 lattice and λ = 1.145. The critical point is at κc = 0.1864463(4).

the algorithm. They are therefore extremely difficult to predict. What virtually all
algorithms have in common, though, is the fact that towards the critical point, they
perform worse. This phenomenon is called critical slowing down, i.e. the integrated
auto-correlation times of the observable in question increases as the critical point
is approached. An example of this is shown in Fig. 3.3 with the critical point κcr =
0.1864463(4) for λ = 1.145 taken from Ref. (Hasenbusch, 1999). In general, one expects
a behavior similar to critical phenomena, i.e. a scaling with the correlation length
according to a power law with a dynamical critical exponent z: τint ∝ ξz.

20 Error Analysis

To summarize, the determination of integrated auto-correlation times is a central
part of the planning and analysis of all Monte Carlo simulations. Before even starting
the runs, one needs to have an idea of the magnitude of the τint of the observables
to be measured in order to decide whether the computation is feasible at all. Once
the measurements are done, not all auto-correlation functions will look as in Fig. 3.1.
The errors are typically larger and also long tails can make a precise determination of
τint difficult. However, without the auto-correlation time, we cannot give an error and
without an error, the measurement is without meaning.

Exercise 3.1 Write a program which reads in the MC time history of the observables Ai

and computes the expectation value of a derived quantity F̄ and its error.

Exercise 3.2 Take a sample equilibrium history of m and m2 and compute the normalized
auto-correlation functions ρ. Plot them and look at the exponential fall-off. Then compute
τint(W) and do some experiments regarding the summation window W . Suggestion: Use
L/a = 6, λ = 1.145 and κ = 0.18 with 106 measurements.

Exercise 3.3 Study the dependence of the auto-correlation time of m2 on the trajectory
length and the step size. What are issues in choosing it for production running?

Exercise 3.4 Now extend the program to analyze the Binder cumulant. Compute the nec-
essary derivatives analytically and modify the observable() and derivative() routines.

Exercise 3.5 In the vicinity of phase transitions auto-correlation times tend to increase for
most algorithms. This is called critical slowing down. Study τint of m and the Binder cumulant
as κ crosses the critical point of κc = 0.1864463(4) at L/a = 6, λ = 1.145.

Exercise 3.6 Try to get the exponential auto-correlation time τexp, for which should hold
ρ(t) = C exp(−t/τexp) for t → ∞. (To be more precise, it is the supremum over all possible
observables.)

4

Summary

This course covers the implementation of an HMC for φ4 theory, the measurement
of simple observables and the data analysis. For the four sessions available, in which
most of the programming was done, this was already a dense program. The next step
could be the actual analysis of critical properties of this theory. However, one would
like to use a better algorithm for this to be a satisfying experience.

Many other interesting topics are not covered as well. For example, one could have
split the action and introduced multiple time scales for the integration, have gone
more into the analysis of round-off errors or tried more advanced integrators. Also a
comparison to single variable update algorithms would be interesting. However, I still
hope that to those, who have never done a complete simulation, it gives an impression
of how a simulation with an HMC algorithm is set up and how data is analyzed.

Probably my biggest regret is that these exercises are very conservative by focussing
on HMC instead of broadening the knowledge of alternative methods. The strength of
the algorithm is that it can be used to simulate any theory with continuous variables,
also when many degrees of freedom are coupled; a situation where single variable
updates typically fail. However, at least in the traditional form presented here, virtually
no information about the theory is injected in the setup. This can be considered an
advantage, because there is no risk of a bias in the result. Still, recent improvements
of the HMC algorithms have shown that using knowledge about the physics of the
system can lead to significant improvements of the performance. Hasenbusch’s mass
preconditioned HMC(Hasenbusch, 2001) or Lüscher’s DD-HMC (Lüscher, 2005) are
prime examples of this. Hopefully, the future will bring methods, which are even more
adapted to the problem in question and are even more powerful for the simulation of
QCD or other field theories.

Acknowledgements

I want to thank the organizers of this school for inviting me to give this course, Martin
Hasenbusch for interesting discussions during its preparation and Rainer Sommer for
useful remarks on the manuscript.

References

S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, “Hybrid Monte Carlo,”
Phys. Lett. B 195 (1987) 216.

S. A. Gottlieb, W. Liu, D. Toussaint, R. L. Renken and R. L. Sugar, “Hybrid Molec-
ular Dynamics Algorithms for the Numerical Simulation of Phys. Rev. D 35 (1987)
2531.

M. Hasenbusch, “A Monte Carlo study of leading order scaling corrections of phi**4
theory on a three dimensional lattice,” J. Phys. A 32 (1999) 4851 [arXiv:hep-
lat/9902026].

M. Hasenbusch, K. Pinn and S. Vinti, “Critical exponents of the three-dimensional
Ising universality class from finite-size scaling with standard and improved actions,”
Phys. Rev. B 59 (1999) 11471.

M. Hasenbusch, “Speeding up the hybrid Monte Carlo algorithm for dynamical
fermions,” Phys. Lett. B519 (2001) 177-182. [hep-lat/0107019].

Leimkuhler, B. and Reich, S., Simulating Hamiltonian Dynamics. 2005. Cambridge
University Press, Cambridge.

M. Lüscher, “A Portable high quality random number generator for lattice field theory
simulations,” Comput. Phys. Commun. 79 (1994) 100 [arXiv:hep-lat/9309020].

M. Lüscher, “Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD,”
Comput. Phys. Commun. 165 (2005) 199 [arXiv:hep-lat/0409106].

M. Lüscher, “Computational Strategies in Lattice QCD,” arXiv:1002.4232 [hep-lat].
N. Madras and A. D. Sokal, “The Pivot algorithm: a highly efficient Monte Carlo

method for selfavoiding walk,” J. Statist. Phys. 50 (1988) 109.
I.P. Omelyan, I.M. Mryglod and R. Folk, Comput. Phys. Commun. 151 (2003) 272.
A. D. Sokal, Monte Carlo Methods in Statistical Mechanics: Foundations and New

Algorithms, Lectures ath the Cargeèse Summer School, 1996
U. Wolff [ALPHA collaboration], “Monte Carlo errors with less errors,” Comput.

Phys. Commun. 156 (2004) 143 [Erratum-ibid. 176 (2007) 383].

