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1 Introduction

The model which we will simulate in this course is the φ4 theory in D = 3 dimension. The
aim is to make a complete calculation, starting from writing the code and debugging it,
running and data analysis. We are going to use the Hybrid Monte Carlo algorithm.

1.1 Definition of the model

We immediately define the model on a D dimensional LD lattice with lattice spacing a and
size L = Na. Thus the lattice points are given by

x = a(n0, . . . , nD−1) ; ni ∈ N0 , 0 ≤ ni < N

The real valued fields φ are living on the sites, φx ∈ R and we adopt periodic boundary
conditions. So if µ̂ is the unit vector in µ direction, then φx+Lµ̂ = φx. The action S is given
by

S(φ) =
∑

x

−2κ
D−1∑
µ=0

φxφx+µ̂ + φ2
x + λ(φ2

x − 1)2

 (1)

Expectation values can be computed using the path integral method

〈A〉 =
1
Z

∫ ∏
x

dφx exp(−S(φ))A(φ)

with the partition function Z =
∫ ∏

x dφx exp(−S(φ)).
The model has two well known limits: λ = 0 gives a Gaussian model, in the limit λ → ∞
the Ising model is recovered. It has a second order critical line in the space spanned by the
two coupling constants λ and κ.

1.2 Observables

We will be looking just at a few observables. The most important ones are powers of the
magnetization m

m =
∑

x

φx . (2)

Note that on a finite lattice, 〈m〉 = 0, so interesting quantities are the magnetic suscepti-
bility

χ =
1
V
〈m2〉

and the Binder cumulant

U =
〈m4〉

(〈m2〉)2
.

We will also look at derivatives of observables with respect to κ. If A does not depend on
κ, we can get them from correlations with the interaction term W = 2

∑
x

∑D−1
µ=0 φxφx+µ̂

∂

∂κ
〈A〉 = 〈WA〉 − 〈W 〉〈A〉 . (3)
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1.3 Algorithm

The purpose of these exercises is to get hands on experience implementing and using the
HMC algorithm. For this purpose, momenta πx conjugate to the field variables φx are
introduced and the partition function is extended as follows

Z =
∫ ∏

x

dπx

∏
x

dφxe−H(π,φ)

with Hamiltonian H(π, φ) = 1
2

∑
x π2

x + S(φ). Expectation values, which are functions of φ
only, are unaltered.
As the “hybrid” already indicates, it has several parts: momentum heat bath, molecular
dynamics evolution and Metropolis step

1. Momentum heat-bath: Choose new random momenta according to the distribution
P (πi) ∝ exp(−π2

i /2)

2. Molecular dynamics evolution: Numerically solve the Hamiltonian equations of mo-
tion

d
dτ

φτ
x =

∂

∂πx
H(πτ , φτ )

d
dτ

πτ
x = − ∂

∂φx
H(πτ , φτ )

for some fictitious time interval τ . This moves the fields from some initial (π, φ) to
(π′, φ′).

3. Acceptance step: Calculate the change in the Hamiltonian ∆H = H(π′, φ′)−H(π, φ)
and accept the proposed new field φ′ with probability Pacc = min[1, exp(−∆H)].

2 Implementation

Getting all this will take some time, so let’s start simple. Some basic routines are provided.
They are written in C and are just propositions to make life easier. If you are unfamiliar
with this language, you can (re-)implement them in any other language of your choice. You
can get them at http://www-com.physik.hu-berlin.de/~sschaef/LH
Most of it is in file phi4.c. It contains the main program, which at the moment does read
in the basic parameters of the action, initializes the hopping field, fills the field φ with
random numbers and computes the action S on a given field configuration φ.

2.1 Layout of the lattice

The φ field and the hopping field are global in lattice.h, where also the lattice size L, the
dimension D and the volume V are defined.
The lattice is ordered lexicographically, each point with coordinate (n0, n1, . . . , nD−1) gets
assigned a unique index j. It can be computed by

j =
D−1∑
i=0

niL
i.

This way, the field φx of the Lagrangian is realized as the field phi[j] of the computer
program.
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Fortunately, the specific ordering of the points needs rarely to be understood. However,
the hopping field hop[V][2*D] is important to understand: it is used to navigate the
D dimensional lattice. The index of the neighbor of the point with index i in direction
µ is hop[i][mu] in the forward direction 0 ≤ µ < D and hop[i][D+mu] in the back-
ward direction. If this point has coordinates (n0, n1, n2), then the point with coordinates
(n0, n1 + 1, n2) has index jp=hop[i][1]. Analogously, if we want to increase n2 by one,
then jp=hop[i][2]. The field also takes care of the periodic boundary conditions. If you
want to go into the negative direction, the corresponding indices are in the upper D entries
of the hop field. So (n0, n1 − 1, n2) has index jp=hop[i][D+1].

2.2 Tasks

To get familiar with the code here are a few simple exercises

1. Get the code, type make phi4 to compile and then run it ./phi4 infile. infile is
the input file from which the parameters are read.

2. Understand the phi4.c file. First main() then action() which computes the action
S for the global field phi[], in particular how the hopping field is used.

3. Write a routine to measure the magnetization m defined in Eq. 2. Test this routine
on field configurations φ of which you know the result.

4. Write a routine to measure the other quantities necessary for the κ derivative of 〈m2〉
and 〈m4〉 using Eq. 3.

3 Random Numbers

Gaussian random numbers: As random number generator we use ranlux by M. Lüscher.
It is available from the author’s web-page:
http://luscher.web.cern.ch/luscher/ranlux/index.html
It generates pseudo-random numbers, equally distributed in the range [0, 1). One method
to get Gaussian random numbers is the so-called Box-Muller procedure. Given x1 and
x2 which are drawn from a flat distribution in (0, 1] the following transformation gives
Gaussian random numbers y1 and y2, distributed according to P (y) ∝ exp(−y2/2)

y1 =
√
−2 ln x1 cos(2πx2)

y2 =
√
−2 ln x1 sin(2πx2)

3.1 Tasks

1. Write a routine which fills a vector of length n with double precision Gaussian random
numbers distributed according to P (x) ∝ exp(−x2/2). Test this routine by filling
many such vectors and histogramming. Does the distribution match your expectation?
(Do only if time allows, otherwise get the routine from me.)

2. Now introduce the global momentum field mom[V] which will hold the momenta π
conjugate to the field variables phi[V] and fill it with normally distributed random
numbers. Write a routine which, given the phi and mom fields, computes the molecular
dynamics Hamiltonian H.
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