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1 Error Analysis

Most Monte Carlo algorithms produce a series of field configurations which are correlated
among each other. These correlations die out with increasing Monte Carlo time separation,
however, it still poses a problem to the estimation of the statistical errors of measured
observables. To be specific, our algorithm produces configurations φ1 → φ2 → · · · → φN on
which observable Aα are measured. So we get a set of measurements {Aαi : i = 1, . . . , N}.
Let us assume that the thermalization process is already completed and the φi are in
equilibrium. To quantify the correlations between the successive configurations one looks
at the auto-correlation function Γαβ

Γαβ(t) = 〈(Aαi − 〈Aα〉)(A
β
i+t − 〈A

β〉)〉 .

Auto-correlations let this to be non-zero for t > 0. The brackets 〈· · · 〉 mean an average
over repeated ’experiments’, i.e. independent sets of N configurations. Of course, we almost
never do this in real life, but use an estimator from one Markov chain

Γ̄αβ(t) =
1

N − t

N−t∑
i=1

(Aαi − Āα)(Aβi+t − Ā
β) +O(1/N) (1)

with Āα = 1
N

∑
iA

α
i .

In most lattice simulations we compute observables, which are functions of such averages
of primary observables.

F = F (A1, . . . , An)

from which we also need the derivatives fα = ∂F/∂Aα. Then the obvious estimator is
F̄ = F (Ā1, . . . , Ān) and its error σF is given by[2]

σ2
F =

2τint

N
vF

with the variance corresponding to F given by

vF =
∑
αβ

fαfβΓαβ(0)

and the integrated auto-correlation time for F

τint,F =
1
2

+
1
vF

∞∑
t=1

∑
αβ

fαfβΓαβ(t)

≡ 1
2

+
∞∑
t=1

ρF (t)

The error of the normalized auto-correlation function ρ can also be given

[δρF (t)]2 =
1
N

∞∑
k=1

(ρF (k + t) + ρF (k − t)− 2ρF (t)ρF (k))2

Note that ρF (t) = ρF (−t).
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Because Γαβ(t) is only poorly determined for large t, the sum for τint has to be truncated
at some finite “window” W . Otherwise one would essentially sum up noise and increase
the error of the computed τint,F .

τ̄int,F =
1
2

+
W∑
k=1

ρF (t) . (2)

By neglecting the contribution from k > W one introduces a bias in the estimator. Ac-
cording to Madras and Sokal[1], the variance of this estimator, however, of τint is given
by

(δτint,F )2 ≈ 4W + 2
N

τ2
int,F ,

which shows that without a finite W the variance would be infinite. The right choice of
W amounts to a balance between bias and variance of the estimator of τint[3]. Lüscher in
Ref. [4] suggests to sum up to the smallest W such that

√
〈δρ(W )2〉 ≥ ρ(W ).

1.1 Tasks

1. If you want, write a program which reads in the MC time history of the observables
Ai and computes the expectation value of a derived quantity F̄ and its error. Alter-
natively, get a simple implementation at
http://www-com.physik.hu-berlin.de/~sschaef/LH/gamma.c .
So far, the function F (x) = x and its derivative are implemented.

2. Take a sample equilibrium history of m and m2 and compute the normalized auto-
correlation functions ρ. Plot them and look at the exponential fall-off. Then compute
τint(W ) and do some experiments regarding the summation window W . Suggestion:
Use L/a = 6, λ = 1.145 and κ = 0.18 with 106 measurements.

3. Study the dependence of the auto-correlation time of m2 on the trajectory length and
the step size. What are issues in choosing it for production running?

4. Now extend the program to analyze the Binder cumulant. Compute the necessary
derivatives analytically and modify the observable() and derivative() routines.

5. In the vicinity of phase transitions auto-correlation times tend to increase for most
algorithms. This is called critical slowing down. Study τint of m and the Binder
cumulant as κ crosses the critical point of κc = 0.1864463(4) at L/a = 6, λ = 1.145.

6. Try to get the exponential auto-correlation time τexp, for which should hold ρ(t) =
C exp(−t/τexp) for t→∞. (To be more precise, it is the supremum over all possible
observables.)

2 Critical exponents

For this section, time is too short, but I left it in for the last step to get “real” numbers.
The theory of critical phenomena tells us, that in the vicinity of criticality, U in the φ4

model shows the following universal behavior

U = U∗ + c(λ)(κ− κcr)L1/ν + d(λ)L−ω + . . .
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where we dropped terms which are even stronger suppressed in L. So we can get the critical
exponent ν by considering the derivative of U with respect to κ at fixed λ. Dropping the
higher terms yields

∂

∂κ
U ≈ cL1/ν

and we can get ν from the dependence of this quantity on L at fixed λ. This is the more
traditional approach to the problem. More modern would be to hold some other observable
fixed and thereby eliminate also the non-leading corrections. In the following, we will use
λ = 1.145, κ = 0.1864463 and perform runs on L = 4, . . . , 9. This value of κ is the estimate
of the critical value taken from Ref. [6] which along with Ref. [5] is a good reference for
how to do such computations professionally.

2.1 Task

1. Measure the derivative of the Binder cumulant as a function of L and determine ν.
To get the derivative, use the method sketched on the first problem sheet.
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