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Quantum Chromo Dynamics (QCD)
http://www.atlas.uni-wuppertal.de/

oeffentlichkeit/Quarks.html

name Charge mass in Mev

up 2/3 5

down -1/3 10

charm 2/3 1000

strange -1/3 100

top 2/3 175000

bottom -1/3 42000

Quarks Hadrons

Mesons Baryons (proton …)

Gluon

‣ coupling:  𝜶strong  ↔ ΛQCD

Theory of strong interactions



QCD and the Particle Data Group review

SUMMARY TABLES OF PARTICLE PROPERTIES

Extracted from the Particle Listings of the

Review of Particle Physics
K.A. Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

Available at http://pdg.lbl.gov
c⃝2014 Regents of the University of California

(Approximate closing date for data: January 15, 2014)
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‣ QCD needs to be understood well to find out what else is there  
 
dark matter — CP-violation — (in)stability of the (EW) vacuum
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The strong coupling

τ-decays
lattice

structure
functions

e
+e

–jets & shapes

hadron 
collider

electroweak
precision fits

Baikov
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BBG
JR

MMHT
NNPDF

Davier
Pich
Boito
SM review

HPQCD (Wilson loops)

HPQCD (c-c correlators)

Maltmann (Wilson loops)
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JADE (3j)

DW (T)
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  (tt cross section)
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  (C)
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ETM (ghost-gluon vertex)
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April 2016

How strong are the  
strong interactions?
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QCD, sketch

‣ Theory of strong interactions

‣ Quantum Field Theory with Lagrangian  
 
 

‣ Fields: gluons and quarks 

‣ But particles: hadrons 
             p, n, 𝝅, K,…   confinement!

‣ A theory which is mathematically consistent 
 at all distances (an exception for a QFT)

name Char mass in Mev
up 2/3 5

down -1/3 10
charm 2/3 1000
strange -1/3 100

top 2/3 175000
bottom -1/3 42000

LQCD = � 1

2g02
tr Fµ⌫Fµ⌫ +

NfX

f=1

 f {D +m0f} f
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‣ Theory of strong interactions

‣ Quantum Field theory with Lagrangian  
 
 

‣ Fields: gluons and quarks 

‣ But particles: hadrons 
             p, n, 𝝅, K,…   confinement!

‣ Definition of coupling is not straight forward  
(we do e.g. not want the 𝝅-𝝅 coupling)
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QCD coupling

‣ Theorists:  
 
take                     dimensions 
subtract poles in          …   ←  no physics

↵MS(µ)

D = 4� 2✏
1/✏



Rainer Sommer | DESY | December 2017

QCD coupling

‣ Theorists:  
 
take                     dimensions 
subtract poles in          …   ←  no physics

‣ for QED: 
charged particle scattering at small energy  
 
 
physics!  
 
similar coupling   
••

↵MS(µ)

D = 4� 2✏
1/✏

e

e

e

eFpe(r) = ↵em
1

r2

1

� = kinematics⇥ ↵2
em

e

p
r

kinematics = f(energy, scattering angle)



QCD coupling
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1
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Q with mQ ! 1
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QCD coupling

Analogous to

Quark as test charge  
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QCD coupling

Analogous to

Quark as test charge  

force in PT: 

Fpe(r) = ↵em
1

r2

Q with mQ ! 1
Q
_

Q
. .

x y

r = |x� y|

FQQ̄(r) = ↵MS(µ)
4

3

1

r2
+O(↵2

MS
)

1

Q

Q
time —->



QCD coupling

Analogous to

Quark as test charge  

force in PT: 

define: 
 
 
                                        

••

Fpe(r) = ↵em
1

r2

Q with mQ ! 1
Q
_

Q
. .

x y

r = |x� y|

FQQ̄(r) = ↵MS(µ)
4

3

1

r2
+O(↵2
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)

↵qq(µ) = ↵MS(µ) + c1↵
2
MS

(µ) + . . .

c1 =
1

(4⇡)2

⇢
35

3
� 22�E � (
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9
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3
�E)Nf

�
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[Billoire; Fishler]
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no corrections
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QCD coupling

↵qq(µ) ⌘
3r2

4
FQQ̄(r) , µ =

1

r Q
_

Q
. .

x y
r = |x� y|

↵qq(µ) = ↵MS(µ) + c1↵
2
MS

(µ) + . . .

then

always 
(non-perturbatively)

defined
physics!

perturbatively defined  
by such relations

makes sense for ↵ ⌧ 1

1

Q

Q
time —->
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Energy dependence: Asymptotic freedom

log(𝜇)

g

> 0, independent of scheme(=definition) s

µ
@

@µ
ḡs(µ) = �s(ḡs) = �ḡ3s (b0 + b1ḡ

2
s + . . .)

Taylor series in ↵s = ḡ2s/(4⇡) is reliable at large energy  µ
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Energy dependence: Asymptotic freedom

log(𝜇)

g

> 0, independent of scheme(=definition) s

µ
@

@µ
ḡs(µ) = �s(ḡs) = �ḡ3s (b0 + b1ḡ

2
s + . . .)

Taylor series in ↵s = ḡ2s/(4⇡) is reliable at large energy  µ‣  

‣ Reach large energy, with precision

‣ Determine       in some scheme s 

‣ Use PT —>  predictions for high energy processes 
in terms of perturbative series 

↵s



Rainer Sommer | DESY | December 2017

A look at phenomenology,  e.g.  Re+e-

4 9. Quantum chromodynamics

9.1.2. Quark masses :

Free quarks have never been observed, which is understood as a result of a long-
distance, confining property of the strong QCD force. Up, down, strange, charm, and
bottom quarks all hadronize, i.e. become part of a meson or baryon, on a timescale
∼ 1/Λ; the top quark instead decays before it has time to hadronize. This means that
the question of what one means by the quark mass is a complex one, which requires that
one adopts a specific prescription. A perturbatively defined prescription is the pole mass,
mq, which corresponds to the position of the divergence of the propagator. This is close
to one’s physical picture of mass. However, when relating it to observable quantities, it
suffers from substantial non-perturbative ambiguities (see e.g. Ref. 19). An alternative is
the MS mass, mq(µ2

R), which depends on the renormalization scale µR.

Results for the masses of heavier quarks are often quoted either as the pole mass or
as the MS mass evaluated at a scale equal to the mass, mq(m2

q); light quark masses are

often quoted in the MS scheme at a scale µR ∼ 2 GeV . The pole and MS masses are

related by a slowly converging series that starts mq = mq(m2
q)(1 +

4αs(m2
q)

3π
+ O(α2

s)),

while the scale-dependence of MS masses is given by

µ2
R

dmq(µ2
R)

dµ2
R

=

[

−
αs(µ2

R)

π
+ O(α2

s)

]

mq(µ
2
R) . (9.6)

More detailed discussion is to be found in a dedicated section of the Review, “Quark
Masses.”

9.2. Structure of QCD predictions

9.2.1. Fully inclusive cross sections :

The simplest observables in QCD are those that do not involve initial-state hadrons
and that are fully inclusive with respect to details of the final state. One example is the
total cross section for e+e− → hadrons at center-of-mass energy Q, for which one can
write

σ(e+e− → hadrons, Q)

σ(e+e− → µ+µ−, Q)
≡ R(Q) = REW(Q)(1 + δQCD(Q)) , (9.7)

where REW(Q) is the purely electroweak prediction for the ratio and δQCD(Q) is the
correction due to QCD effects. To keep the discussion simple, we can restrict our
attention to energies Q ≪ MZ , where the process is dominated by photon exchange
(REW = 3

∑

q e2
q , neglecting finite-quark-mass corrections, where the eq are the electric

charges of the quarks),

δQCD(Q) =
∞
∑

n=1

cn ·
(

αs(Q2)

π

)n

+ O
(

Λ4

Q4

)

. (9.8)
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Re+e�(Q) =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

determine ↵s(µ = Q)
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6 50. Plots of cross sections and related quantities

R in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 50.6: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 50.5. Note: CLEO data above Υ(4S) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)
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PT does not really work:
Non-perturbative “effects”

particle (= hadrons) — production 
partial solution: go to Euclidean region (smearing, moments)
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Determinations of 𝜶s

‣ high energy experiment + phenomenology is  
very challenging (as we just saw)

‣ alternative: 
low energy experiment + “simulation”  
                                         = MC-evaluation of  
                                            discretized path integral  
 
                                   hadron masses / properties 
      
                                    parameters of theory 
                                    

↵qq(µ) ⌘
3r2

4
FQQ̄(r) , µ =

1

r

4 Step scaling for short distances and large volume

For six di↵erent lattice spacings a, Wilson loops have been measured with total statistic of Nwl, listed
in table 1. The coupling g2

qq(r, a) at finite lattice spacing a was derived from Wilson loops applying the
analysis described in [22] with only one di↵erence: the parallel transporters in time are the dynamical
gauge fields (no smearing) and statistical errors are reduced by the multi-hit technique [23].

To extrapolate the coupling to its continuum value we used two di↵erent strategies. In the regime
of intermediate distances the scale was set at r0 [24] and the coupling g2

qq(r, a) was extrapolated to
the continuum at r/r0 = 0.3, 0.4, . . . , 1.1. In the short distance regime (r  0.45r0) the continuum
extrapolation of the coupling g2

qq(r) was performed using step scaling.
Originally used to bridge large scale di↵erences in finite volume couplings [25], we use it here to

extrapolate from large to small distances, in large volume.

0 0.5 1
0

5

10

15

20

r/r0

g2 qq
(r

)

continuum limit
step scaling

step scaling
r  0.45r0

Figure 3: Six step scaling iterations starting
from r⇤ = 0.45r0 reaching down to r ⇡ 0.1r0
and the continuum limit for the large distance
regime.

0 0.025 0.05 0.075 0.1
0.75

0.8

0.85

0.9

(a/r)2

g2 qq
(s

k r ⇤
,a
/r

)/
u

⇢ , 0
⇢ = 0

Figure 4: Continuum limit eq. (14) of the step
scaling function with (⇢ , 0) and without
(⇢ = 0) slope. Red markers are shifted for
visualization.

In an iterative process one computes the step
scaling function

g2
qq(sr) = �(s, g2

qq(r)) , s = 0.75 (11)

with scale factor s. The step scaling function �
is a discrete � function. Starting at a given point
(g2

qq(r⇤) = u0) a series is formed by applying the
step scaling function iteratively:

u0 = g
2
qq(r⇤) r⇤ = 0.45r0

u1 = g
2
qq(sr⇤) = �(s, u0)

u2 = g
2
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...

u5 = g
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qq(s5r⇤) = �(s, u4)

In this way one can reach down from r⇤ = 0.45r0
to r5 = s5r⇤ ⇡ 0.11r0, visualized in fig. 3. In each
iteration one has to compute the lattice equivalent
⌃ of the step scaling function, which has an addi-
tional dependence on the lattice spacing a,

g2
qq(sr, a) = ⌃(s, u, a/r) |g2

qq(r,a)=u (12)

and perform its continuum extrapolation,

�(s, u) = lim
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⌃(s, u, a/r) , (13)

which is the starting point of the next iteration. The
extrapolation to a/r ! 0 is performed as a linear
fit

⌃(s, u, a/r) = �(s, u){1 + ⇢ (a/r)2} (14)

with slope ⇢(u) and continuum value�(s, u). To test our treatment of cut o↵ e↵ects we extrapolate with
and without slope ⇢, where the extrapolation without slope is constrained to data points (a/r)2  0.05
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A lot of progress in recent years

‣ a lot of progress in recent years

• concepts

• algorithms  
 
 
 

• computers

‣ precise results are possible

‣ but 𝜶(𝜇) is a challenge

year Cost to generate one  96x483 
configuration [hours on 512 cores]

2001 17000       “Berlin wall”

2015         5       Hasenbusch preconditioning, multigrid/deflation,  
                      open BC 



Rainer Sommer | DESY | December 2017

Challenge
large volume: 

a>0.04 fm
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Solution: finite volume 𝜇 = 1/L

‣ L4 torus or cylinder 
 
 

‣ Finite volume is part of the  
definition of g(𝜇), not one of its errors 

‣ iteratively connect  L and 2L  
“step scaling“ 
 
 
⟹  L=2-10 fm  perturbative region, running of coupling

Q Q̄
Q Q̄

Q
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Q
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Step Scaling Function: Connects L → 2L
LPHAA
Collaboration
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ḡ2(µ/2, a/L) = ḡ2(1/(2L), a/L)

1/4

1/6
same

same

a

same

a0 =
4

6
a

L
ḡ2(µ/2, a0/L) = ḡ2(1/(2L), a0/L)
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  continuum step scaling function   � =
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Challenge is met by finite volume couplings

a2µ2
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large volume
PACS−CS(2009)SF
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take continuum limit
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‣ 2008 - now study of technicolor candidate models by many groups
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1. Determination of hadronic scale: CLS Ensembles

‣ CLS Ensembles

‣ Large volume, large scale simulations, with  
theoretically well founded improved Wilson action

‣ coordinated between  
 
  CERN  
  MADRID  
  MAINZ 
  MILANO + ROMA 
  REGENSBURG 
  DESY, Standort ZEUTHEN  
 
coordinated by S. Schaefer, Data management H. Simma
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1. Determination of hadronic scale: CLS Ensembles

‣ finite L                                            large L  
 
    simulated at common  g0 ⇔ common lattice spacing a

T
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0
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T

time
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space
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Bruno et al,                       1411.3982
Bruno, Korzec, Schaefer, 1608.089000



10-1 100 101 102
0

0.2

0.4

0.6

0.8

 [GeV]

s( )

  2. Running to intermediate energy

Coupling definition

homogeneous Dirichlet 
boundary conditions

smoothed 
action density E(t)

p
8t
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Be aware

‣  

‣ perturbation theory for decoupling, Nf=3 → Nf=5  
looks great. 
 
can it be entirely misleading?  
then 0.0002 error would be wrong. 
 
this (unlikely, I think) possibility is a motivation  
to do also Nf=4 non-perturbatively. 
I consider that step necessary in order to reduce 
the error further (e.g. factor 0.5)

f⇡, fK depend on Vud, Vus, and the SM scale setting

Lhad/
p
t0

GF running

scheme switch
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A small warning about PT 

‣ The 𝚲-parameter 
 
 
 
 
 

‣ is a renormalization group invariant (constant) 
 

‣ With perturbative, truncated, 𝜷-function  
 
                                                            for 
 
it is constant up to inaccuracies of PT
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Test where 𝚲 is constant

⇤e↵(↵) = ⇤ ⇥ (1 + O(↵n
)

2 + n - loop �-fct
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‣ SF coupling  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‣ SF coupling  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Figure 5: The running of the coupling and the ⇤-parameter.

close to the continuum. The two di↵erent extrapolations can be seen in fig. 4. The five di↵erent pairs
of black solid and red dotted lines in fig. 4 show the fit of ⌃(s, u, a/r) scaled by 1/u. The uppermost
pair corresponds to the continuum extrapolation of the last iteration. Comparing the results for ⇢ = 0
and ⇢ , 0, indicates that cut o↵ e↵ects are under good control. We use the ones with larger errors
(⇢ , 0) for further analysis.

In the small distance regime the step scaling strategy is beneficial in comparison to the traditional
continuum limit, in which one would have to compute the coupling up to r � r0. With step scaling the
essential measurements on fine lattices involve only short distance quantities, where self-averaging
works very well. This reduces computational requirements, less statistics is needed.

The continuum extrapolated non-perturbative values of �(s, u) can be compared to the prediction
of perturbation theory. The latter are obtained by inserting the perturbative �-function into

ln(s) = �

p
�(s,u)Z

p
u

1
�qq(g)

d g (15)

and solving for �(s, u). The comparison in fig. 5a shows surprisingly clear deviations from pertur-
bation theory. The non-perturbative �(s, u) crosses the 4-loop prediction at around u = 3.5 and is
significantly lower for u = 2.4 .

5 The ⇤-parameter

The ⇤ parameter was calculated from lattice data
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using the perturbative �-function at 4-loop order. As a Renormalization Group Invariant the ⇤-
parameter should not change as we vary g2

qq(r). Of course this only holds true in a regime where
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In the small distance regime the step scaling strategy is beneficial in comparison to the traditional
continuum limit, in which one would have to compute the coupling up to r � r0. With step scaling the
essential measurements on fine lattices involve only short distance quantities, where self-averaging
works very well. This reduces computational requirements, less statistics is needed.
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Conclusions

‣ Lattice QCD, finite size techniques & high order PT 
→ Control over strong interactions from lowest to highest energies

‣ Agreement with experiment → QCD valid at all energies

‣ Below 1% accuracy for 𝜶(mZ) 
→ precision input for LHC, vacuum stability, BSM searches

‣ at 𝜶=0.1: PT is accurate 

‣ at 𝜶=0.2: examples where PT is not accurate (not discussed here)

•  more generally, this may be a reason for differences   in determinations in 𝜶(mz) 

• also a reason for caution in some phenomenological      uses of PT, eg.  in flavor physics
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Very high precision quantity: 𝜔

‣ deviation from PT at 𝜶 = 0.19 : 
 

‣ not small, does not look perturbative

‣ statistically very significant 
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Very high precision quantity: 𝜔

‣ deviation from PT at 𝜶 = 0.19 : 
 

‣ not small, does not look perturbative

‣ statistically very significant 
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Errors of asymptotic 
series are difficult to

assess.

This is an explicit 
example. 

A lesson to keep in mind!
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(cont. limit)



Methods used on the lattice and main challenges

‣ finite L, step scaling 

‣ observables at the lattice spacing 
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Methods used on the lattice and main challenges

‣ finite L, step scaling 

‣ observables at the lattice spacing 
scale  

‣ potential 

‣ vacuum polarisation 

‣ current two-point functions 

‣ QCD vertices 

➡ statistical errors 

➡ perturbative order, 
behavior of PT  
(non-universal) 
 

➡ compromise:   
discretisation errors 
         vs.  
 perturbative error}



   -parameter for various Nf⇤

enter 
ranges /averages

do not enter 
(e.g. superseded by 
new computation)

do not enter 
(do not satifsy  
quality criteria)

reference scale  
computed in most  
computations

r0 ⇡ 0.5 fm


