How strong are the strong interactions?

Rainer Sommer

John von Neumann Institute for Computing, DESY & Humboldt University, Berlin

DESY, Colloquium, 5+6 December 2017

Happy St. Nich

Particle physics - the quest for the fundamental theory

Rainer Sommer | DESY | Decen

Quantum Chromo Dynamics (QCD)

http://www.atlas.uni-wuppertal.de/ oeffentlichkeit/Quarks.html

Theory of strong interactions

Quarks

Hadrons

name	Charge	mass in Mev
up	2/3	5
down	-1/3	10
charm	2/3	1000
strange	-1/3	100
top	2/3	175000
bottom	-1/3	42000

Sur and

Baryons (proton ...)

Gluon

• coupling: $\alpha_{\text{strong}} \leftrightarrow \Lambda_{\text{QCD}}$

Summary table of Particle Properties

Summary table of Particle Properties

 150 pages of Mesons+Baryons (QCD)

Summary table of Particle Properties

150 pages of Mesons+Baryons (QCD)

50 pages of the rest

Summary table of Particle Properties

 150 pages of Mesons+Baryons (QCD)

50 pages of the rest

QCD needs to be understood well to find out what else is there dark matter — CP-violation — (in)stability of the (EW) vacuum

The strong coupling

How strong are the strong interactions?

QCD, sketch

- Theory of strong interactions
- Quantum Field Theory with Lagrangian

Fields: gluons and quarks

- But particles: hadrons p, n, π , K,... confinement!
- A theory which is mathematically consistent at all distances (an exception for a QFT)

mass in Mev

Char

name

NIC

- Theory of strong interactions
- Quantum Field theory with Lagrangian

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_0^2} \operatorname{tr} F_{\mu\nu} F_{\mu\nu} + \sum_{f=1}^{N_f} \overline{\psi}_f \{D + m_{0f}\} \psi_f$$

- Fields: gluons and quarks
- But particles: hadrons p, n, π , K,... confinement!
- Definition of coupling is not straight forward (we do e.g. not want the π - π coupling)

• Theorists: $\alpha_{\overline{MS}}(\mu)$

take $D = 4 - 2\epsilon$ dimensions subtract poles in $1/\epsilon \dots \leftarrow$ no physics

• Theorists: $\alpha_{\overline{\text{MS}}}(\mu)$

take $D = 4 - 2\epsilon$ dimensions subtract poles in $1/\epsilon \dots \leftarrow$ no physics

for QED: charged particle scattering at small energy

$$\sigma = \text{kinematics} \times \alpha_{\text{em}}^2$$

$$_{\text{kinematics} = f(\text{energy}, \text{scattering angle})}$$

physics!

kinematics = J (energy, scattering

similar coupling

$$F_{pe}(r) = \alpha_{\rm em} \frac{1}{r^2}$$

$$F_{pe}(r) = \alpha_{\rm em} \frac{1}{r^2}$$

Q with
$$m_Q \to \infty$$

Analogous to

$$F_{pe}(r) = \alpha_{\rm em} \frac{1}{r^2}$$

Quark as test charge

Q with
$$m_Q \to \infty$$

$$\overline{Q}$$
 $\xrightarrow{\text{time}}$

Analogous to
$$F_{pe}(r) = \alpha_{em} \frac{1}{r^2}$$
 $r = |\mathbf{x} - \mathbf{y}|$
Quark as test charge Q with $m_Q \rightarrow \infty$
force in PT: $F_{Q\bar{Q}}(r) = \alpha_{\overline{MS}}(\mu) \frac{4}{3} \frac{1}{r^2} + O(\alpha_{\overline{MS}}^2)$
define: $\alpha_{qq}(\mu) \equiv \frac{3r^2}{4} F_{Q\bar{Q}}(r), \ \mu = \frac{1}{r}$
no corrections
 $\alpha_{qq}(\mu) = \alpha_{\overline{MS}}(\mu) + c_1 \alpha_{\overline{MS}}^2(\mu) + \dots$
 $c_1 = \frac{1}{(4\pi)^2} \left\{ \frac{35}{3} - 22\gamma_E - (\frac{2}{9} - \frac{4}{3}\gamma_E)N_f \right\} = O(1)$

[Billoire; Fishler]

Energy dependence: Asymptotic freedom

Taylor series in $\alpha_s = \bar{g}_s^2/(4\pi)$ is reliable at large energy μ

Energy dependence: Asymptotic freedom

• Taylor series in $\alpha_s = \bar{g}_s^2/(4\pi)$ is reliable at large energy μ

Energy dependence: Asymptotic freedom

- Taylor series in $\alpha_s = \bar{g}_s^2/(4\pi)$ is reliable at large energy μ
- Reach large energy, with precision
- Determine α_s in some scheme s
- Use PT —> predictions for high energy processes in terms of perturbative series

A look at phenomenology, e.g. R_{e+e-}

 $R_{e^+e^-}(Q) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to u^+u^-)}$

total cross section for $e^+e^- \rightarrow$ hadrons at center-of-mass energy Q

$$\frac{\sigma(e^+e^- \to \text{hadrons}, Q)}{\sigma(e^+e^- \to \mu^+\mu^-, Q)} \equiv R(Q) = R_{\text{EW}}(Q)(1 + \delta_{\text{QCD}}(Q))$$

$$\delta_{\text{QCD}}(Q) = \sum_{n=1}^{\infty} c_n \cdot \left(\frac{\alpha_s(Q^2)}{\pi}\right)^n + \mathcal{O}\left(\frac{\Lambda^4}{Q^4}\right)$$

determine $\alpha_s(\mu = Q)$

et ______

see

high energy experiment + phenomenology is very challenging (as we just saw)

- high energy experiment + phenomenology is very challenging (as we just saw)
- alternative: low energy experiment + "simulation" = MC-evaluation of discretized path integral

recent example: pure gauge theory, very fine lattice; Husung, Koren, Krah, S. 2017

high energy experiment + phenomenology is very challenging (as we just saw)

recent example: pure gauge theory, very fine lattice; Husung, Koren, Krah, S. 2017

Lattice gauge theory

Lattice gauge theory

A lot of progress in recent years

- a lot of progress in recent years
 - concepts

 algorithms 	year	Cost to generate one 96x48 ³ configuration [hours on 512 cores]	
	2001	17000	"Berlin wall"
	2015	5	Hasenbusch preconditioning, multigrid/deflation, open BC

- computers
- precise results are possible
- but $\alpha(\mu)$ is a challenge

Challenge

large volume: a>0.04 fm

Rainer Sommer | DESY | December 2017

Rainer Sommer | DESY | December 2017

 $a^2 \mu^2 \ll 1$ or strong assumptions to take continuum limit

Solution: finite volume $\mu = 1/L$

Solution: finite volume $\mu = 1/L$

L⁴ torus or cylinder

Solution: finite volume $\mu = 1/L$

L⁴ torus or cylinder

Finite volume is part of the definition of g(μ), not one of its errors

 \implies L=2⁻¹⁰ fm perturbative region, running of coupling

Running from Observables in finite volume

NIC

Running from Observables in finite volume

Step Scaling Function: Connects L → 2L

 $\sigma =$ continuum step scaling function

A

Collaboration

Step Scaling Function: Connects L → 2L

 $\sigma =$ continuum step scaling function

Challenge is met by finite volume couplings

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer
- 1994 SU(3) YM coupling [LüSoWeWe
- 2000 3-loop β for SF coupling [BoWe
- 2001-05 N_f=2 coupling [BoFrGeHaHe]
- 2009 N_f=3 coupling S. Aoki et al. (PA)

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer (speed of my laptop)
- 1994 SU(3) YM coupling [LüSoWeWo]
- 2000 3-loop β for SF coupling [BoWeWo]
- 2001-05 N_f=2 coupling [BoFrGeHaHeJaKuRoSimSinSoWeWiWo]
- 2009 N_f=3 coupling S. Aoki et al. (PACS-CS)
- 2010-2013 Gradient flow coupling [NaNe, Lü, LüWe, RaFr, SinRa]

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer (speed of my laptop)
- 1994 SU(3) YM coupling [LüSoWeWo]
- 2000 3-loop β for SF coupling [BoWeWo]

2017 N_f=3 coupling [BriBruFrKoRaSchSimSinSo] with good precision

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer (speed of my laptop)
- 1994 SU(3) YM coupling [LüSoWeWo]
- 2000 3-loop β for SF coupling [BoWeWo]

- 2017 N_f=3 coupling [BriBruFrKoRaSchSimSinSo] with good precision
- 2008 now study of technicolor candidate models by many groups

CLS Ensembles

- Large volume, large scale simulations, with theoretically well founded improved Wilson action
- coordinated between
 - CERN MADRID MAINZ MILANO + ROMA REGENSBURG DESY, Standort ZEUTHEN

coordinated by S. Schaefer, Data management H. Simma

1. Determination of hadronic scale: CLS Ensembles

2. Running to intermediate energy

2. Running to intermediate energy

2. Running to intermediate energy

3. Running to large energy

3. Running to large energy

The β -function from the step scaling function

$$\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} \frac{-1}{\beta(x)} = \log 2$$

smooth fit function for $\beta(x)$

The non-perturbative β-functions

loop = order in g^2

The non-perturbative β-functions

loop = order in g^2

The non-perturbative β-functions

loop = order in g^2

Error budget

error budget of our computation (contribution to err²)

Scales	MeV								
				pe	ercent				
1/L∞	50		\supset	20	40	60			
f _π ,f _K ,m _π …√8t₀	150 -500	scale setting					Contri		
μ _{had} = 1/L _{had}	200 4000	$L_{\rm had}/\sqrt{t_0}$					butio		
		GF running				_	n to re	dominatod	
$\mu_{ extsf{swi}}$		scheme switch				elative e	elative e	by	
μ рт	70000	SF running				_	error squ	running	
		PT decoupling				_	uared		

0.1185(<mark>8</mark>)	Alpha	2017	precise + high quality
0.1175(<mark>17</mark>)	PDG (non-lattice)	2016	
0.1182(12)	FLAG (lattice review)	2016	
0.1184(12)	FLAG	2013	

The result in comparison

PDG 2016

0.1185(8) <u>ALP</u>	HA 2017	precise + high quality	Baikov Davier Pich Boito SM review HPQCD (Wilson loops)	t-decays
0.1175(<mark>17</mark>) PDG (non-la	ttice) 2016		HPQCD (c-c correlators) Maltmann (Wilson loops) PACS-CS (SF scheme) ETM (ghost-gluon vertex) BBGPSV (static potent.)	lattice fu
0.1182(12) FLAG (lattice	review) 2016		BBG JR NNPDF MMHT ALEPH (jets&shapes) OPAL(j&s)	tructure unctions
0.1184(12) FLAG	2013		JADE(j&s) Dissertori (3j) JADE (3j) DW (T) Abbate (T) Gehrm. T) Hoang	jets & shapes
			GFitter CMS (tt cross section) 0.11 0.115 April 2016	electroweak precision fits hadron collider 0.12 0.125 0.13 $\Omega_{s}(M_{7}^{2})$

The result in comparison

PDG 2016

0.1185(<mark>8</mark>)	Alpha	2017	precise + high quality	Baikov Davier Pich Boito SM review HPQCD (Wilson loops)	т-decays
0.1175(17)	PDG (non-lattice)	2016	average of discrepant results	HPQCD (c-c correlators) Maltmann (Wilson loops) PACS-CS (SF scheme) ETM (ghost-gluon vertex) BBGPSV (static potent.)	lattice f
0.1182(12)	FLAG (lattice review)	2016		BBG JR NNPDF MMHT ALEPH (jets&shapes) OPAL(j&s)	tructure unctions
0.1184(12)	FLAG	2013		JADE(j&s) Dissertori (3j) JADE (3) DW (T) Abbate (T) Hoang	jets & shapes
				GFitter CMS (tt cross section) 0.11 0.115 0.12 April 2016	electroweak precision fits hadron collider 0.125 0.13 $\Omega_s(M_z^2)$

this (unlikely, I think) possibility is a motivation to do also $N_f=4$ non-perturbatively. I consider that step necessary in order to reduce the error further (e.g. factor 0.5)

A small warning about PT

$$\Lambda = \mu \times \left(b_0 \bar{g}^2(\mu) \right)^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}^2(\mu))} \\ \times \exp\left\{ - \int_0^{\bar{g}(\mu)} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Lambda = 0$$

A small warning about PT

• The Λ -parameter

$$\Lambda = \mu \times \left(b_0 \bar{g}^2(\mu) \right)^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}^2(\mu))} \\ \times \exp\left\{ - \int_0^{\bar{g}(\mu)} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

is a renormalization group invariant (constant)

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Lambda = 0$$

A small warning about PT

• The Λ -parameter

$$\Lambda = \mu \times \left(b_0 \bar{g}^2(\mu) \right)^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}^2(\mu))} \\ \times \exp\left\{ - \int_0^{\bar{g}(\mu)} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

is a renormalization group invariant (constant)

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Lambda = 0$$

• With perturbative, truncated, β -function

 $\Lambda_{\text{eff}}(\alpha) = \Lambda \times (1 + O(\alpha^n) \text{ for } 2 + n - \log \beta - \text{fct}$

it is constant up to inaccuracies of PT

$$\Lambda_{\text{eff}}(\alpha) = \Lambda \times (1 + O(\alpha^{n}))$$

$$\uparrow$$

$$2 + n - \text{loop } \beta \text{-fct}$$

$$\Lambda_{\text{eff}}(\alpha) = \Lambda \times (1 + O(\alpha^{n}))$$

$$\uparrow$$

$$2 + n - \log \beta - \text{fct}$$

SF coupling

(*v*-dependent schemes)

$$\Lambda_{\text{eff}}(\alpha) = \Lambda \times (1 + O(\alpha^{n}))$$

$$\uparrow$$

$$2 + n - \log \beta - \text{fct}$$

SF coupling

(*v*-dependent schemes)

$$\Lambda_{\text{eff}}(\alpha) = \Lambda \times (1 + O(\alpha^{n}))$$

$$\uparrow$$

$$+ n - \log \beta - \text{fct}$$

SF coupling

2

0.9

0.85

0.8

 $0.75\frac{1}{2}$

 $\sigma(s,u)/u$

(*v*-dependent schemes)

2-loop

3-loop

4-loop

 $\rho \neq 0$

6

+

Ξ

4

U

$$\Lambda_{\text{eff}}(\alpha) = \Lambda \times (1 + O(\alpha^{n}))$$

$$\uparrow$$

$$+ n - \log \beta - \text{fct}$$

SF coupling

2

0.9

0.85

0.8

0.75

2

 $\sigma(s,u)/u$

(*v*-dependent schemes)

2-loop

3-loop

4-loop

 $\rho \neq 0$

+

Ŧ

- Lattice QCD, finite size techniques & high order PT
 Control over strong interactions from lowest to highest energies
- Agreement with experiment \rightarrow QCD valid at all energies

NIC

- ► Lattice QCD, finite size techniques & high order PT → Control over strong interactions from lowest to highest energies
- Agreement with experiment \rightarrow QCD valid at all energies

- ► Lattice QCD, finite size techniques & high order PT → Control over strong interactions from lowest to highest energies
- Agreement with experiment \rightarrow QCD valid at all energies
- Below 1% accuracy for $\alpha(m_Z)$ \rightarrow precision input for LHC, vacuum stability, BSM searches
- at $\alpha = 0.1$: PT is accurate
- at $\alpha = 0.2$: examples where PT is not accurate (not discussed here)
 - more generally, this may be a reason for differences in determinations in $\alpha(m_z)$
 - also a reason for caution in some phenomenological uses of PT, eg. in flavor physics

Thank you

Backup / material

Very high precision quantity: ω $\frac{1}{\bar{g}_{\nu}^2} = \frac{1}{\bar{g}^2} - \nu \times \omega(\bar{g}^2)$

• deviation from PT at $\alpha = 0.19$:

$$(\omega(\bar{g}^2) - v_1 - v_2\bar{g}^2)/v_1 = -3.7(2)\,\alpha^2$$

- not small, does not look perturbative
- statistically very significant

Very high precision quantity: ω $rac{1}{ar{g}_{ u}^2} = rac{1}{ar{g}^2} - \nu imes \omega(ar{g}^2)$

lpha

• deviation from PT at $\alpha = 0.19$:

$$(\omega(\bar{g}^2) - v_1 - v_2\bar{g}^2)/v_1 = -3.7(2)\,\alpha^2$$

Errors of asymptotic series are difficult to assess.

This is an explicit example. A lesson to keep in mind!

- not small, does not look perturbative
- statistically very significant

- finite L, step scaling
- observables at the lattice spacing scale

- potential
- vacuum polarisation
- current two-point functions
- QCD vertices

finite L, step scaling

statistical errors

observables at the lattice spacing scale

- potential
- vacuum polarisation
- current two-point functions
- QCD vertices

- finite L, step scaling
- observables at the lattice spacing scale

- potential
- vacuum polarisation
- current two-point functions
- QCD vertices

- statistical errors
- perturbative order,
 behavior of PT
 (non-universal)

- finite L, step scaling
- observables at the lattice spacing scale

- potential
- vacuum polarisation
- current two-point functions
- QCD vertices

- statistical errors
- perturbative order,
 behavior of PT
 (non-universal)

compromise: discretisation errors vs. perturbative error

$\Lambda\text{-}parameter$ for various N_f

enter ranges /averages

do not enter(e.g. superseded by new computation)

do not enter(do not satifsyquality criteria)

 $r_0 \approx 0.5 \,\mathrm{fm}$ reference scale computed in most computations